A review of the scientific basis and practical application of a new test of utricular function--ocular vestibular-evoked myogenic potentials to bone-conducted vibration.

نویسندگان

  • I S Curthoys
  • L Manzari
  • Y E Smulders
  • A M Burgess
چکیده

This is a review of recently published papers showing that bone-conducted vibration of the head causes linear acceleration stimulation of both inner ears and this linear acceleration is an effective way of selectively activating otolithic afferent neurons. This simple stimulus is used in a new test to evaluate clinically the function of the otoliths of the human inner ear. Single neuron studies in animals have shown that semicircular canal neurons are rarely activated by levels of bone-conducted vibration at 500 Hz which generate vigorous firing in otolithic irregular neurons and which result in a variety of vestibulo-spinal and vestibulo-ocular responses, and the latter is the focus of this review. In humans, 500 Hz bone-conducted vibration, delivered at the midline of the forehead, at the hairline (Fz), causes simultaneous and approximately equal amplitude linear acceleration stimulation at both mastoids and results in ocular-evoked myogenic potentials (oVEMPs) beneath both eyes. The first component of this myogenic potential, at a latency to peak of about 10 ms is a negative potential and is called n10 and, in healthy subjects, is equal in amplitude beneath both eyes, but after unilateral vestibular loss, the n10 potential beneath the eye opposite to the lesioned ear is greatly reduced or totally absent. n10 is a myogenic potential due to a crossed otolith-ocular pathway. In patients with total unilateral superior vestibular neuritis, in whom saccular function is largely intact (as shown by the presence of cervical vestibular evoked myogenic potentials (cVEMPs), but utricular function is probably compromised, there is a reduced n10 response beneath the contralesional eye, strongly indicating that n10 is due to utricular otolithic function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ocular vestibular-evoked myogenic potential (oVEMP) to test utricular function: neural and oculomotor evidence

A new test for utricular function has recently been introduced and validated, namely the ocular vestibular-evoked myogenic potential (oVEMP), which refers to the myogenic potentials recorded by surface EMG electrodes beneath both eyes in response to bone conducted vibration (BCV) of the head or air conducted sound (ACS). The oVEMP test differs from another vestibular-evoked myogenic potential r...

متن کامل

Cervical and ocular vestibular evoked myogenic potentials in multiple sclerosis participants

  Background: Multiple sclerosis (MS) is a chronic neurological disease that affects brain and spinal cord. The infratentorial region contains the cerebellum and brainstem. Vestibular evoked myogenic potentials (VEMPs) are short-latency myogenic responses. Cervical vestibular evoked myogenic potential (cVEMP) is a manifestation of vestibulocolic reflex and ocular vestibular evoked myogenic pote...

متن کامل

The Effect of Cognitive Tasks on the Ocular Vestibular Evoked Myogenic Potentials in Healthy People

Introduction: The majority of the daily life activities involve the concurrent performance of simultaneously challenging motor and cognitive activities, such as talking while walking, which requires the vestibular system for balance. Functional balance allows the brain to interpret and integrate the sensory information from our physical and social environment. This study aimed to investig...

متن کامل

Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration.

Extracellular single neuron recording and labelling studies of primary vestibular afferents in Scarpa's ganglion have shown that guinea-pig otolithic afferents with irregular resting discharge are preferentially activated by 500 Hz bone-conducted vibration (BCV) and many also by 500 Hz air-conducted sound (ACS) at low threshold and high sensitivity. Very few afferent neurons from any semicircul...

متن کامل

Effect of bone-conducted vibration of the midline forehead (Fz) in unilateral vestibular loss (uVL). Evidence for a new indicator of unilateral otolithic function

Recently, a new indicator of vestibular otolithic function has been reported: it is a series of negative-positive myogenic potentials recorded by surface electrodes on the skin beneath the eyes in response to bone-conducted vibration (BCV) delivered to the forehead at the hairline in the midline (Fz). The potential is called the ocular vestibular-evoked myogenic potential (oVEMP) and the first ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta otorhinolaryngologica Italica : organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale

دوره 29 4  شماره 

صفحات  -

تاریخ انتشار 2009